


NASA TT F-469 

CONTROL OF THE DYNAMICS OF A TWO-PHASE LIQUID-GAS WEIGHTLESS 

MEDIUM WITH THE AID OF SURFACE EFFECTS 

By V. N. Serebryakov 

Translation of "Ob upravlenii dinamikoy dvukhfaznoy sredy 
zhidkost'-gaz v usloviyakh nevesomosti s pomoshch'yu 

poverkhnostnykh effektov." 
Kosmicheskiye Issledovaniya, 

Vol. 4, NO. 5, pp. 713-721, 1966 

NATIONAL AERONAUT ICs AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfieid, Virginia 22151 - CFSTl price $3.00 



.*  

1 CONTROL OF THE DYNAMICS OF A TWO-PHASE LIQUID-GAS WEIGHTLESS 
MEDIUM WITH THE AID OF SURFACE EFFECTS 

V. N. Serebryakov 

The necessity of developing special methods for or- 
ganizing hydrodynamic processes in two phase (gas-liquid) 
systems in the absence of gravity is considered. 

The necessary conditions and the possibility of sat- 
isfying them through the rational utilization of surface 
energy are considered. It is shown that it is possible to 
stabilize the surface of the boundary between the gas and 
the liquid in a perturbed two-phase medium and to stabilize 
the volumetric separation of the phases by means of hydro- 
phobic and hydrophilic rigid frames (screens). The condi- 
tions which provide for the optimum characteristics of the 
screens are determined. 

A theoretical investigation is conducted on the dynamics 
of elements associated with the perturbed two-phase medium 
when it interacts with screens of various types. The numeri- 
cal solutions of the boundary value problems describing the 
behavior of liquid drops and gas bubbles were obtained with 
the aid of the M-20 electronic digital computer and indicate 
that it is possible to achieve a process of phase separation 
in the considered system. The results of experimental in- 
vestigations which confirm the conclusions are presented. 

The general sphere of problems associated with the effect of weightless- /713* 
ness on the mechanics of the two-phase system (gas-liquid) can be divided into 
two basic domains if certain assumptions are made: 

- The domain of the hydrostatics of weightlessness, which includes prob- 
lems of form equilibrium and stability of the surface separating the gas and 
the liquid (the Bond characteristic criterion-Bo<<l), 

- The domain of hydrodynamics, which includes the problems of organization 
of such processes as boiling, condensation, bubbling, electrolysis, etc., under 
conditions of weightlessness. These are closely associated with the problem 
of phase separation in a perturbed gas-liquid medium (the Weber characteristic 
criterion-We>l) . 

Theoretical and experimental investigations in the field of hydrostatics 
make it possible, at this time, to establish basic directions and methods of 
solving hydrostatic problems, including the problems of controlling the param- 
eters of the surface separation. 

The processes pertaining to the second group (which are usually called 

*Numbers given in margin indicate pagination in original foreign text. 



hydrodynamic processes) are usually characterized by the presence of intense 
internal perturbations and the relative prevalence of inertial forces (We>l) 
which in the general case are nonstationary in magnitude and direction. 
connection the conditions for the formation of a stable boundary separating the 
phase and con itons for the normal flow of the above processes are absent under 
conditions of weightlessness. The organization of such processes requires the 
development of special methods for controlling the dynamics of the perturbed two- 
phase medium under conditions of weightlessness. 

In this 

We note the following characteristic features associated with the mechanics 
of a perturbed two-phase medium in a gravitational field: 

- the presence of a dynamically stable (equipotential) free surface, 

- the existence of a hydrostatic mechanism which provides for a separation 
of phases on the free surface and for the organized motion of inclusions (drops, 
bubbles), distributed over the volume, toward the surface. 

/714 

Assuming that it is sufficient to have these conditions satisfied, we shall 
show that when gravity is absent each of them may be realized by the rational 
utilization of the energy associated with surface interactions in the system. 

1. By using the well-known mechanism of surface interactions we shall show 
that the boundary separating the phases in a perturbed medium may be stabilized 
by at least two methods depending on the adhesion to the solid body: 

- on the surface of the hydrophilic frame (fig.la), 

- on the surface of the hydrophobic (fig.lb) rigid frame (in the future it 
will be referred to as the screen). 

If the perturbations in the medium are reduced to the fluctuations of pres- 
sure P, which act on the separation surface, then obviously the latter will be 
stably 
phase) when we have the condition 

suspended on the exterior surface of the frame (facing the nonwetting 

a 
Figure 1. Schematic showing 
the boundary separating the 
frame, b-hydrophobic frame, 
wetting phase. 

b 
the stabilization of 
phase : a-hydrophilic 
1-wetting phase, 2-non- 
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Figure 2. Schematic showing the semi-permeabilities: 
1- hydrophobic screen, 2-hydrophilic screen, 3-liquid, 
4-gas, Po-pressure in the gas-liquid medium, P -gas 
pressure, P -pressure of the liquid. g 

P 
where Po=2olcos 8l/risthe surface pressure9 ois the surface tension at the 
boundary separating the gas and the liquid and 8 is the contact angle on the 
screen material. 

This condition can be satisfied always by selecting the dimension r of the 
screen mesh in a corresponding manner. 

2. The separation surfaces fixed in this manner will have the general pro- 
perties of selective permeability (the first with respect to the liquid and the 
second with respect to the gas; see figure 2): 

- when the inclusion comes in contact with the surface of the wetted screen 
it will pass through the structure due to the pressure discontinuity on the sur- 
face of the boundary produced by the local curvature in the mesh. 

(when condition (1) is satisfied), i.e., the condition of phase separation on 
the free surface will be satisfied. 

- The regions which are in contact with the nonwetted phase will be "blocked" 

The maximum permissible velocities (from condition (1)) for the flow of /715 
phases over the structure may be determined by means of relationships from the 
theory of filtration (ref. 1) 

where IJ. is the dynamic viscosity of the phase, W is the relative content of 
cavities in the structure, c is the anisotropy coefficient of the structure, s is 
the screen thickness. 

We can see from (2) that the maximum overflow velocity is determined by the 
viscous-capillary characteristics of the phase, by the wetting conditions, and de- 
pends in a linear manner on the dimensions of the mesh. In this connection it is 
of interest to consider the problem of selecting the dimensions of the mesh which 
would provide for an optimum relationship between the stability of the fixed sep- 
aration surface and the carrying capacity of the screen. 

Designating by PG the pressure loss produced by overflow, we introduce 
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the quantity AP =Po-Pg which characterizes the "stability reserve" for the sep- 

aration surface. Assuming laminar conditions we obtain 
Y 

x 

i 

( 3 )  

where k =20/ cos 01,  k2=8 cos p/W, ug is the velocity of phase overflow along the 
structure. 1 

Figure 3 represents the functions P,(r) and P@(r) during constant velocity 
for the case of the water-air medium. The zone of selective permeability lies 
under the curve Po in the diagrams. 
there is a maximum value of APy when the dimension of,the mesh has a definite 
value r*. 
dimension of the mesh 

The nature of the curves indicates that 

From the condition of a maximum ( 3 )  (APy) r=O we obtain the optimum 

Jr k2 r =2-u~, 
k l  

which provides, for a given velocity urn, a maximum "stability reserve" /716 

or for a given "stability reserve" it provides the best screen carrying capacity 
of u m max = (k12/4k2) (l/APy). 

3 .  Let us investigate the interaction of the two-phase medium with the con- 
sidered screens. In particular the investigation will be carried out for a sys- 
tem consisting of hydrophilic and hydrophobic screens which are situated in par- 
allel at a distance t from each other. We shall assume that the quantity t is 
selected from the condition t/l<l, where 1 is the characteristic linear dimension 
of inclusions in the medium (droplets, bubbles), which exist (are generated) in 
the volume between the screens. 

If we neglect the insignificant transport of inclusions along the surfaces, 
we can limit ourselves to the investigation of the dynamics of the free surface 
associated with individual inclusions during the process of their efflux through 
the corresponding screen which are initially suspended between the two solid sur- 
faces. 

It is expedient to apply variational methods based on the Hamilton principle 
and conditions of equilibrium for the action integral (J) in the case of true 
motions 

4 

61 = 0, where1 = (T- 1l)dt. 
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p, mm of water 
p,  mm of water 

-3 
Re = B  

D ZD 40 

Figure 3 .  Varia t ion  i n  Po and Pg as a func- 
t i o n  of r f o r  two cases:  a-air-water-hydrophobic 
screen (8=130°, s=O.5cm, W=0.4, 0=70 dyne/cm, 
y=1.82 10-4 poises) ; b-air-water-hydrophilic 
screen (8=20°, s=O.5cm, W=0.4, 0=70 dyne/cm, 
y= 10-2 poises) . 

Assuming t h a t  i n  t h i s  system t h e  volumes (V - t) and v e l o c i t i e s  (u - ug) 
a r e  small and t h a t  t h e  sur face  fo rces  (o/t) p reva i l ,  we can neglec t  t h e  i n t e -  

l 2  
2 ,  

g r a l  of a c t i v e  fo rces  T= 5s u dV and reduce the  problem t o  the establishment of 

a s e r i e s  of equilibrium su r faces  which provide f o r  t h e  minimum p o t e n t i a l  energy 
of t h e  system (Sn=O) during subsequent i n s t a n t s  of time (here 5 i s  the  dens i ty  of 
the  l i qu id ) .  

The func t iona l  of t he  t o t a l  p o t e n t i a l  energy (sur face  and vo1umetric)of t h e  
gas-liquid-hydrophobic-hydrophilic sur face  system ( f i g .  4 )  i s  given by: 

11 = 012s12 + ms13 + 0 1 J L . i  + G23S2.3 + (r24s24 + P l V l f  PZV,, (4 1 

where 5 

area  of phases i - j ;  P1, V 

given i n s t a n t  of t i m e ;  

i s  t h e  su r face  t ens ion  a t  t h e  boundary of media i - j ;  Sij i s  t h e  contact 

a r e  t h e  t o t a l  pressure and volume of t h e  l i q u i d  a t  t he  

V a r e  t h e  t o t a l  p ressure  and gas volume. 

i j  

1 

p2' 2 

Eu le r ' s  equation f o r  t h i s  t y p e  of a func t iona l  ( i n  t h e  case of phase contac t  
with a homogeneous surface) gives us  ( r e f s .  2 and 3) 

2512H- h=O 

(where H i s  t h e  average curvature of t he  f r e e  sur face ,  h i s  t h e  Lagrange multi- 
p l i e r )  and t h e  condition of t ransverseness  
contact w i th  t h e  s o l i d  w a l l .  

o12 cos 81=023-0~3 a t  the  l i n e  of 
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By taking the variation of (4) we can /717 
see that the special feature associated with 
the presence of two solid surfaces with dif- 

condition for transverseness which is deter- 
mined by the nature of the surface, and the 
unknown configurations of the flowing volume 
V must satisfy the conditions: 

ferent surface energy leads to an additional c 

1 
1 

1 
4 012 (; + - R2 )=PI - P2, (5) 

023 - 013 
, ( 6 )  cos01 = 

0 1 2  Figure 4. The initial position 
of a single inclusion. 1-liquid, 

philic wall, R1-meridional radius, 
R2-equatorial radius of curvature. 

2-gas, 3- hydrophobic wall, 4- hydro- R?r - OIL 
1 (7) cos 0 2  = 

0 1 2  

where R , I$ are the radii of principal curvature and B1,e2 are the contact angles 
on the kydrophobic and hydrophilic surfaces. 

It is obvious that in this case the unknown surfaces, which according to 
(5) have a constant average curvature, must also be surfaces of revolution whose 
axes of symmetryare normal with respect to the solid planes (fig.4) because these 
surfaces have a minimum value. Reducing equation (5) to a dimensionless form 
(multiplying it by t/012) and expressing it in terms of cylindrical coordinates 
z ,  p (ref.4), we obtain a boundary value problem for determining the generatrixes 
of the family: 

with boundary conditions 

p'(0) = tg[ 90" - e,], (9) 

p'(1) = tg190" - 031, (10) 

and the parameter V1, which may be conveniently introduced into the boundary con- 
ditions as an initial value p 

(11) P(0)  = Po. 

The general solution of ( 8 )  is expressed in terms of normal elliptical 
Legendre integrals of the first and second kind' 

1 F(v, Ii) --;B(cp, IC) 1 
p , f C 2 =  - lr I1 

[v = ~ ( 2 ) ;  li X.(h',h,) ; h, h' = I/, h ' ( p o ,  81, 02)  

6 
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which are the reduction constants and it becomes expedient to apply numerical 
methods. Certain difficulties in the numerical solution of this boundar 
problem are produced by the initial arbitrary nature of the parameter h.  

For this reason we first considered several limiting propositions which 
made it possible to determine the individual values of the function h(p0)  di- 
rectly and the interpolation of these provided for a sufficient initial approxi- 
mations of h and good convergence of the iteration methods which were used. 
particular equation (8) can be solved by quadrature (by assigning respectively 
the surface of a torus, a catenoid and a sphere: 

can be neglected (R-p ), 

;Y 

/718 

In 

- in the case of a large volume(p >>l), when the equatorial curvature 11% 
0 

2 0  
- in the case R =R when h=l/Rl+l/R assumes a definite value: h=O for 1 2' 2 

curvatures of opposite sign h=2/R for curvatures with the same sign. 
1 

A solution of the boundary value problem (8)-(11) was carried out by means 

The method of obtaining the solution included the 
of the M-20 electronic digital computer using iteration methods for values of 
parameter po from 0 to 100. 
f o 11 owing : 

- Integration of equation (8) by the Runge-ktta method with initial con- 
ditions ( 9 ) ,  (11) and initial approximation for A ;  

- The automatic solution, by the iteration method, of the transcendental 
equation 

where 6; ( A )  is the discrepancy in the boundary conditions for z=1 in the next 
iteration step; p i  ( h )  is the value of (1) after integration with sequential 
approximation h;  p& is the boundary condition when z=1;  

- The computation of the unknown curve with values for h determined from 
(12) 

The families of curves which have been obtained and which illustrate the 
dynamics of the free surface liquid and of the gas bubble are shown in figures 5 
and 8 with superposed apexes. 
which express the dynamics of the dimensionless surface pressure as well as the 
correspondence between po and the volume of the liquid. 

Figure 6 shows the relationships h ( p o )  and V(po) ,  

Reference 5 presents the numerical integration of equation (8) carried out in 
a dimensionless form with respect to h. However, solutions which are obtained 
in the case of this transformation (transformation of the type ~ = j h l z , i T ; = . j h ] p )  
are not capable of representing the nature of changes in the surface when the 
volume varies because the transformation scale h is generally a nonlinear func- 
tion of the space factor (which is unknown in this case). 

7 



By analyzing these  curves we can see t h a t ;  

r--- 

Figure 5. The dynamics of t he  
l i q u i d ' s  f r e e  surface (81=130°, 
g2=5O0).  

Figure 6. The dynamics of t h e  
l i q u i d  surface pressure.  

- f o r  l a r g e  volumes(p0>>1) t h e  l i q u i d  
su r face  i s  t o r o i d a l  and approaches a catenoid 
as t h e  volume i s  decreased; i n  t h i s  case t h e  
r e l a t i v e  a rea  of contact  with t h e  hydrophi l ic  
w a l l  increases  while contact  with t h e  hydro- 
phobic w a l l  decreases.  The surface pressure 
i s  d i rec ted  from t h e  l i q u i d  t o  t h e  gas and 
decreases monotonically i n  i t s  absolute  value 
from A* ( t o rus )  t o  h=O. 

A s  t he  volume i s  f u r t h e r  decreased t h e  
surface pressure increases  a t  a very in tense  
rate and i s  d i r e c t e d  i n s i d e  t h e  l i q u i d ,  thus 
providing f o r  t h e  n a t u r a l  drainage of t he  
l i qu id :  

- a t  a c e r t a i n  value p o=p cr t h e  volume 

which has been described assumes i t s  minimum 
value (see f ig .6)  : when po<pcr t h e  so lu t ions  

of (8) give configurat ions wi th  an increase  
i n  t h e  described volume (broken curves i n  
f i g u r e  5 ) ,  which i s  i l l u s t r a t e d  i n  f i g u r e  7. 
Since t h e  l i q u i d  i s  incompressible, we can 
conclude t h a t  t h e  volume V (per) has a mini- 
mum value f o r  which t h e  s t a b l e  pos i t ion  of 
t he  l i q u i d  i n  simultaneous contact  with two 
surfaces  i s  possible .  A s  t h e  volume decreases 
f u r t h e r  t h e  l i q u i d  breaks off  from t h e  hydro- 
phobic surface.  The form of t h e  su r face  a f t e r  
t h e  breakaway (po=O) represents  a region of a 
sphere ( f i g u r e  7) .  

The dynamics of t h e  gas bubble i s  i l l u s -  
t r a t e d  by t h e  curves i n  f i g u r e  8. Analysis of 
t hese  curves i n d i c a t e s  t h a t :  

- t h e  shape of t h e  bubble corresponds 
t o  t h e  predominance of t h e  contact  wi th  hy- 
drophobic surface;  t h e  r e l a t i v e  area of t h e  
contact  wi th  t h e  hydrophi l ic  surface decreases 
sharply during t h e  drainage process and when 
pO=pcrthebubble breaks away from t h e  l a t t e r ;  

- su r face  pressure i s  d i rec ted  i n s i d e  /720 
t h e  bubble (bo) regardless  of i t s  dimensions 
and a i d s  t h e  drainage process (fig.9).  

8 



I I ' 3  

F igure 7 .  Form of t h e  l i q u i d  
before breakaway (1) from t h e  
hydrophobic sur face  and a f t e r  
breakaway (2) .  

The ana lys i s  which has been ca r r i ed  out 
makes i t  poss ib le  f o r  u s  t o  conclude t h a t  i n  
t h e  system considered a mechanism of t h e  volu- 
metric separa t ion  of phases occurs; under 
these  conditions,  t he  su r face  fo rces  provide 
f o r  a t o t a l  separa t ion  of i nc lus ions  from the  
unwetted (with respec t  t o  them) sur face  and 
f o r  contac t  with the  wetted sur face .  

4 .  I n  order  t o  v e r i f y  the  conclusions 
which have been made, experimental i n v e s t i -  
ga t ions  of t he  drainage process f o r  water 
d r o p l e t s  and a i r  bubbles which a r e  i n i t i a l l y  
suspended i n  t h e  s l i t  between t h e  hydrophilic 
and hydrophobic elements, were ca r r i ed  out.  

The height of t h e  s l i t  w a s  s e l ec t ed  from 
condi t ions  of simulating weak g rav i ty  t=1.3- 
1.6mm ( the  Bond number had the  respec t ive  
values:  Bo=ngSt2/o=0.2-0.3). 

A s  an i l l u s t r a t i o n ,  w e  can point out t h a t  
t he  sur face  shapes which have been obtained 
(when modelling according t o  t h e  Bo number) 
cha rac t e r i ze  the  behavior of t h e  l i qu id  when, 
i n  p a r t i c u l a r ,  t h e  s l i t  has a height of 100 
mm and g rav i ty  i s  reduced t o  2.10-4 g . l  

The motion p i c t u r e  frames ( f i g s .  10a and l l a )  confirm completely t h e  con- /721 
e lus ions  which have been made concerning t h e  shape and dynamics of t he  f r e e  
l i qu id  sur face  and of t he  bubble i n  t h e  considered system: 

- i n  t he  i n i t i a l  i n s t a n t  of t i m e  (po>>l) t he  su r face  of t h e  inc lus ion  
i s  t o r o i d a l ,  

- a s  the  volume decreases the  su r face  of t he  l i q u i d  approaches a catenoid,  

- when V=V(pcr) t h e  l i q u i d  breaks away from t h e  hydrophobic sur face  and 
the  bubble breaks away from t h e  hydrophi l ic  sur face  and i s  completely removed 
from t h e  considered volume. 

For comparison purposes motion p i c tu re  frames of t h e  process ( f i g s .  10b 
and l l b )  a r e  presented when the  force  of grav i ty  i s  i n  t h e  opposite d i r e c t i o n  
(from the  hydrophilic t o  the  hydrophobic surface).  
of t he  phases i s  inh ib i t ed  and we can see t h a t  the  p i c tu re  of t h e  process remains 
p r a c t i c a l l y  unchanged and t h e  laws spec i f i ed  above remain va l id .  

'According t o  Benedict ( r e f .  6 ) ,  t h e  c r i t i c a l  values of t h e  loading f a c t o r  

In  t h i s  case t h e  separa t ion  

2 n*=o/g%t (which, when exceeded, r e s u l t  i n  i n s i g n i f i c a n t  grav i ty)  i n  both cases  

have the  r e spec t ive  va lues  n* g=3g and 7.4'10-4 g. 
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Figure 08.  Dynamics of a bubble Figure 9. Dynamics of t he  bubble 
(e1=160 , 82=50°). surf ace pressure.  

a b 

Figure 10. Dynamics of t he  l iqu id :  a-g i s  d i r ec t ed  s t r a i g h t  from the  
hydrophobic t o  the  hydrophi l ic  sur face  (time i n  seconds): 1-0.0; 2-2.0; 
3-4.0; 4-6.0; 5-8.0; 6-10.0; 7-10.2; 8-10.24; b-reverse d i r e c t i o n  of g: 
1-0.0; 2-2.0; 3-4.0; 4-6.0; 5-8.0; 6-8.4; 7-8.44; 8-9-44. 

The r e s u l t s  which have been obtained a l s o  permit us t o  a f f i r m  t h a t  i t  i s  
poss ib le  t o  model some elements t o  the  hydrodynamics of weightlessness under 
labora tory  conditions.  

Received 26 May 1965 

10 



a b 

Figure 11. Dynamics of a bubble: a-forward direction 
(time in seconds): 1-0.0; 2-0 .65 ;  3 -1 .15 ;  4 - 1 . 5 ;  5 -1 .8 ;  
6 - 1 . 8 4 ;  7 - 2 . 5 ;  b-reverse direction: 1-0.0; 2 -0 .65 ;  3- 
1 . 3 ;  4 - 3 . 3 ;  5 -3 .5 ;  6-3.54;  7-4.5.  
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